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Abstract: In microeconometrics, expenditure data is typically zero-inflated due to many individ-
uals recording, for one reason or another, no consumption expenditure. A two-part model can be
appropriate for statistical analysis of such data, with the double-hurdle model (DHM hereafter) one
specification that is frequently adopted in econometric practice. Essentially, the DHM is designed to
explain individual demand through a joint decision process: a participation decision (first hurdle), and
a consumption decision (second hurdle). The statistical model is constructed assuming an underlying
bivariate distribution for the decisions, with most empirical studies based on a bivariate normal spec-
ification. A number of recent empirical studies do, however, suggest that the assumption of bivariate
normality is too restrictive. In turn, these studies are themselves restrictive in the sense that their
findings are based on only small departures from bivariate normality (e.g. Box-Cox transformations
of bivariate normal DHM). It is apparent that practitioners need access to DHM that are based on
underlying bivariate non-normality. This paper addresses this need by applying the copula method of
construction of non-normal bivariate distributions to the DHM.
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1. INTRODUCTION termining consumption. Pudney [1989, pp.160-
162] gives a basis for the DHM in consumer
The double-hurdle model (DHM hereafter) pro- choice theory.
posed by Cragg [1971] has been used in microe-
conometrics to analyse a wide range of individ- The statistical construction of the DHM is
ual and household commodity demand. Impor- based on assuming an underlying utility struc-
tant contributions to the DHM literature in- ture for both decision components, whose ran-
clude Jones [1989], in which the demand for dom outcomes are represented by a bivariate
cigarettes is modelled, and Blundell and Meghir distribution. In this respect, the DHM does not
[1987], which was concerned with the labour differ from many other microeconometric con-
supply of married women. Other fields in which structions. Section 2 sets out the details. In
the DHM has been applied include finance and particular, Cragg’s DHM model is presented,
sociology. The DHM has also been applied to for it represents the classical approach to DHM
infrequency-of-purchase contexts; e.g. Deaton modelling. Foundered on bivariate normality,
anq Irish [1984]'_A bibliography of DHM appli- the popularity of Cragg’s DHM permeates the
cations appears in the survey by Smith [2001]. literature. However, recent empirical literature
The DHM is designed to explain the mecha- has questioned the restrictiveness of assuming
nism of individual demand whereby an individu- bivariate normality. This evidence originates
als decision process is decomposed into separate from a class of DHM model obtained by trans-
components that are jointly taken. These are: forming the observed random variable, termed
(i) a market participation decision (whether to Transformed DHM (TDHM hereafter). TDHM
buy or not), and (ii) a consumption level deci- studies point toward the need for practitioners
sion (how much to buy). Motivating this de- to access DHM that are based on bivariate non-
composition is the desire to allow different fac- normality. The remaining sections of the paper
tors to influence demand; e.g. psychological in- address this need by using the copula method
fluences may play a prominent role in determin- of constructing non-normal bivariate distribu-
ing participation, whereas economic consider- tions, and then demonstrating its application
ations are more likely to be important in de- to the DHM.

1237



2. CONSTRUCTION

The DHM is constructed by assuming the ex-
istence of a pair of latent variables designed to
represent utilities: (i) the utility derived from
market participation, denoted by

Y].** =yi<* cR

and (ii) the utility derived from consumption,
denoted by

'}/2** — y;* 6 R
These random variables are then linked to ex-
penditure

Y=y2>0

the latter being observable. The procedure is
this - the utility variables are transformed to
a pair of latent hurdle decision variables: (i) a
participation hurdle

Yy = 1{Yy" > 0}

(1{A} denotes the indicator function, taking
value 1 if event A holds and 0 otherwise) where
Y =yf € {0,1}, and (ii) a consumption hurdle

)/2* — 1{}/2** > 0} Yz**

where Y = y3 > 0. The hurdle variables are
then linked to expenditure as per

Y=Y Y (1)

Let F(y7*,y3*) denote the joint cumulative dis-
tribution function (cdf) of the utilities ¥;** and
Y;™*. The pdf of Y, denoted f(y), is given by the
discrete-continuous mixture:

{ % (FR(y) - F0,y)  ify>0 @
Fo(0) + F2(0) — F(0,0) ify=0

where F;(-) denotes the marginal cdf of ¥;**
(i =1,2). With f(y), we can, for example, de-
rive the log-likelihood function.

2.1 Cragg’s DHM

One very important illustration of the role of F
is given by Cragg’s DHM which sets F' to

*k 7

®, (y’{* = 243, 3/20#; p) (3
where ®5(-,-; p) denotes the cdf of the standard
bivariate normal distribution with correlation
coeflicient p, vectors z and w denote regres-
sor variables, and vectors 3 and <, and scalar
o denote parameters. This bivariate normal
specification has formed the basis of nearly all
DHM studies to date. Jones [1992] gives the
log-likelihood function when (3) is substituted
into (2), for independent observations collected
onY.

2.2 Transformed DHM

Recent empirical studies adopt a more flexible
form of DHM - the TDHM. For example, Yen
[1993] and Jones and Yen [2000] study a partic-
ular TDHM corresponding to a Box-Cox trans-
formation applied to Y assuming Cragg’s speci-
fication (3) for F. TDHM are obtained by speci-
fying a parametric transformation of Y, one that
serves to alter the continuous component of the
pdf of Y. The TDHM is obtained by replacing
the left hand side of (1) by a parametric func-
tion T(Y'), that is:

T(Y) =Yy Y5

The function T is assumed positive-valued, non-
decreasing, and differentiable in y for all Y =
y > 0, and at the origin T'(0) = 0. Under these
conditions on T, only the continuous component
of f(y) alters (i.e. when y > 0), and is given by

aTy) 9

— X

5 < 3y (F2(y) — F(0,y))

y—T(y)

This formula shows that the TDHM is obtained
by scaling the DHM in which y is replaced by
T(y); the scaling factor is simply 07 (y)/dy.
However, while empirical TDHM studies, such
as Yen’s, report improved fits when compared
to Cragg’s DHM, the underlying specification
of the joint cdf F was never varied from bivari-
ate normality - the literature is still mired in
bivariate normality. What the TDHM litera-
ture is clearly pointing toward is the need for
practitioners to access DHM that are based on
bivariate non-normality. The following section
addresses this need.

3. NON-NORMAL DHM

3.1 Bivariate Specifications

The obvious approach when specifying the joint
cdf F would be to choose a suitable bivariate
distribution from amongst the many discussed
in, for example, Kotz et al. [2000]. However, in
light of the general functional form of the pdf
of Y given in (2), with its interaction between
joint and marginal distributions, this conven-
tional approach can suffer from serious mathe-
matical and computational difficulties. In par-
ticular, evaluating (mathematically and/or nu-
merically) the following component of the pdf
of Y:

0

will potentially pose the most problems.
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3.2 Independent Specifications

The presence of correlation between the utili-
ties ¥7** and Y, is the root cause of the afor-
mentioned difficulties. Consequently, another
modelling strategy is to impose independence
between Y7** and Y5, leading to the pdf of Y
of the form:

{ (1 - F1(0)) £ () ify>0
F1(0) + F»(0) — F1(0)F2(0) ify=0

which requires knowledge of only the marginal
distributions. The justification for imposing in-
dependence is argued by Smith (1999}, where
the conditions under which the correlation co-
efficient is weakly identified in the DHM are ex-
amined. However, this parameter-reduction ap-
proach to modelling will struggle to appeal to
many practitioners.

3.3 Copula Specifications

A further alternative is to use the theory of
copulas; see Joe [1997] and Nelsen [1999)].
This method separates the dependency between
Y™ and Y5 from their respective marginal dis-
tributions through the use of a copula function
Cp. Under this approach the bivariate distribu-
tion of ¥7** and Y™ is not specified, rather it
is constructed by specifying the marginal dis-
tributions F; and F5, along with a copula Cs.
The copula literally joins or couples a multivari-
ate distribution function to its one-dimensional
marginal distribution functions. In other words,
the copula method builds joint distributions

Table 1. Examples of bivariate copula Cp(u,v).

from specific marginals, thus it is the oppo-
site of the conventional method which derives
marginals from a specific joint distribution.

For marginals F; and F3, and a copula Cy, by
Sklar’s theorem (Nelsen {1999, p.15]) the joint
cdf of Y7** and Y™ is given by:

F(y7™,y5") = Co(F1(y1™), F2(¥3"))

where parameter 0 represents dependency. Note
especially that the marginal cdf’s need not be
of the same distributional type.

For real-valued (u,v) € (0,1)%, Table 1 lists
some examples of bivariate copula (attribu-
tion is as given by Joe [1997, chp.5]). The
first copula - Normal - simply shows that the
bivariate normal distribution falls within the
class of distributions expressible in copula form
(®7! denotes the inverse of a standard normal
cdf). The Morgenstern, Joe, Gumbel, Plack-
ett and Frank copulas provide examples of one-
parameter bivariate copula, in these cases de-
pendency is parameterised by 6. For example,
positive/negative 6 in the Morgenstern copula
realises positive/negative dependency, 6§ = 0
yields independence. The Two-parameter cop-
ula allows for asymmetric dependence through
the values of # = (61,62) - in copula the-
ory the ubiquitous Pearsonian definition of lin-
ear dependence is extended to cover other con-
cepts of dependence such as concordance, re-
lying on alternate measures of dependence such
as Kendall’s tau and Spearman’s rho, for details
see Joe (1997, chp.2] and Nelsen {1999, chp.5].

Normal 2N (<I>1—1(u), &7 (v);6) for —-1<0<1
Morgenstern w(l+0(1 —u)(1 —v)) for -1< <1
Joe 1- (Q—wl+(1-v)° —(1-u)f’(1-v)°)"" for1<b<oo
Gumbel exp (—((— log (u))® + (- log(v))e)l/v") for1 <6< oo

Plackett’ %6_1 (s — V/s? — 486uv)

for0<f< oo
where s = 1+ §{u + v)
and 6 =0-1

Frank —67log (1 —671(1 — e7f*)(1 — e=%))

for0< 0 <@

where § =1— ¢~

0 0, 1/6, —1/6,
Two-parameter (1 + ((u“"1 1)+ (v —1) ) )

for 6 >0and 65 > 1
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For given (continuous) random variables R and
S, with marginal cdf’s Fi(r) and Fy(s), respec-
tively, the chosen copula induces the joint pdf
f(r, s) as follows:

£r,5) = 5 2 ColFi(r), Fa()

the right hand side of which can be expressed

u—Fy (T),‘U—DE_) (3)

where f1 and fq are the marginal pdf’s. To il-
lustrate, Figure 1 plots the contours (maximum
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height at the origin) of the bivariate pdf induced
by the indicated copula, where the marginals
R ~ N(0,1) and § ~ N(0,1). The contour
plots indicate that there is a considerable dif-
ferences in appearance of the bivariate (non-
normal) pdf’s induced by each copula, even
though the marginal distributions are identi-
cally standard normal. Depending on the cop-
ula, the bivariate pdf can exhibit any type of
non-normal feature as may be desired, such as
asymmetry (see Nelsen [1999, sec.2.7] for a dis-
cussion of concepts of symmetry in bivariate dis-
tributions), and short- and long-tails.

Plackett, 6=11.4
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Figure 1. Bivariate pdf contour plots induced by copula, N(0, 1) margins.
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Returning to the DHM, the pdf of Y, see (2),
under a copula Cy becomes:

{ 2 (R) - Co(F1(0), Foly))  ify>0
Fi(0) + F5(0) — Ca(F1(0), Fz(0)) ify =0

which, to again stress the point, requires spec-
ification of only Fi, F5 and Cy. An alternative
form for the continuous component (y > 0) of
the pdf which can sometimes be useful is given

by:
) (5)
v—Fa(y) .

where fo denotes the marginal pdf of Y5™*. (5)
will generally be much easier to evaluate than
(4), both mathematically and numerically.

20 (1 - 2 CH(F0),)

Finally, a specific example of a non-normal
DHM designed to retain the same marginal nor-
mal distributions as Cragg’s DHM, but one
in which bivariate non-normality is induced
through the use of a copula. Let

Y™ ~ N(z'8,1) and Yy* ~ N(w'y,o?)

and assign a Morgenstern copula (see Table 1).
Under these assumptions, the continuous com-
ponent of the pdf of Y is given by:

0,—1¢1 (y _Uw 7) q)l(zlﬂ)

o (L=2))

where ¢; denotes the pdf and ®; the cdf of a
N(0,1) variable. The probability mass located
at Y = 0 is given by:

1 - &,(z'8)d; (w:)
—63,(<'6)®, (“’ "’)

a
x®, (—z'§)®, (%17)

For independent observations Yi,...,Y,, n; of
which are strictly positive and ng of which are
zero-valued (n;+ng = n), and corresponding re-
gressors (z1,w1), ..., (Tn, W), the log-likelihood
function is given by

x(1— 8, (~2'B)(1 — 2

Zlog fly) + Zlog Pr(Y; =0)

=1

Maximum likelihood estimation of parameters
B, 7, 02 and 8 would then proceed using nu-
merical techniques.

When modelling, information criterion such as
minimum AIC can be used to select amongst
proposed copulas. Formal hypothesis tests can
also be performed, utilising non-nested proce-
dures such as Cox’s test.
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